Neural computation at the thermal limit
نویسندگان
چکیده
Although several measurements and analyses support the idea that the brain is energy-optimized, there is one disturbing, contradictory observation: In theory, computation limited by thermal noise can occur as cheaply as ~$2.9\cdot 10^{-21}$ joules per bit (kTln2). Unfortunately, for a neuron the ostensible discrepancy from this minimum is startling - ignoring inhibition the discrepancy is $10^7$ times this amount and taking inhibition into account $>10^9$. Here we point out that what has been defined as neural computation is actually a combination of computation and neural communication: the communication costs, transmission from each excitatory postsynaptic activation to the S4-gating-charges of the fast Na+ channels of the initial segment (fNa's), dominate the joule-costs. Making this distinction between communication to the initial segment and computation at the initial segment (i.e., adding up of the activated fNa's) implies that the size of the average synaptic event reaching the fNa's is the size of the standard deviation of the thermal noise. Moreover, defining computation as the addition of activated fNa's, yields a biophysically plausible mechanism for approaching the desired minimum. This mechanism, requiring something like the electrical engineer's equalizer (not much more than the action potential generating conductances), only operates at threshold. This active filter modifies the last few synaptic excitations, providing barely enough energy to allow the last sub-threshold gating charge to transport. That is, the last, threshold-achieving S4-subunit activation requires an energy that matches the information being provided by the last few synaptic events, a ratio that is near kTln2 joules per bit.
منابع مشابه
Nanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network
Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally c...
متن کاملComparison of the Experimental and Predicted Data for Thermal Conductivity of Fe3O4/water Nanofluid Using Artificial Neural Networks
Objective(s): This study aims to evaluate and predict the thermal conductivity of iron oxide nanofluid at different temperatures and volume fractions by artificial neural network (ANN) and correlation using experimental data. Methods: Two-layer perceptron feedforward artificial neural network and backpropagation Levenberg-Marquardt (BP-LM) tra...
متن کاملAnalysis of the Thermal Comfort Properties and Heat Protection Performance of Cotton/Nylon-Kermel Fabrics
In this research, fire and radiant heat protection and thermal comfort properties of cotton/nylon-Kermel blended woven fabrics, were utilized to predict the thermal comfort and protection limit of this fabric structure based on Woo and Barker developed model. The results showed that the porosity, the air permeability and the thermal resistance increased with Kermel fiber blend ratio. Conversely...
متن کاملLearning Curve Consideration in Makespan Computation Using Artificial Neural Network Approach
This paper presents an alternative method using artificial neural network (ANN) to develop a scheduling scheme which is used to determine the makespan or cycle time of a group of jobs going through a series of stages or workstations. The common conventional method uses mathematical programming techniques and presented in Gantt charts forms. The contribution of this paper is in three fold. First...
متن کاملThe Prediction of Forming Limit Diagram of Low Carbon Steel Sheets Using Adaptive Fuzzy Inference System Identifier
The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014